Quotient Hopf-Galois structures and associated orders in Hopf-Galois extensions

Paul Truman

Keele University, UK

Auburn University at Montgomery Montgomery, Alabama 14th March, 2019

Overview

It is sometimes possible to relate questions about integral module structure in a Galois extension of local or global fields to analogous questions about subextensions.

In this talk we generalize these ideas to Hopf-Galois extensions.

- Normality in Galois extensions via group algebras.
- Normality in separable Hopf-Galois extensions of fields.
- Two useful lemmas in Galois module theory.
- Hopf-Galois generalizations of these, and applications.

Normality in Galois extensions via group algebras

Let L/K be a Galois extension of fields with group G. L/K is Hopf-Galois for K[G].

We can characterize fixed fields via Hopf subalgebras: The Hopf subalgebras of K[G] are K[J], with J a subgroup of G, and

$$\begin{split} L^J &= \{x \in L \mid \gamma(x) = x \text{ for all } \gamma \in J\} \\ &= \{x \in L \mid z \cdot x = \varepsilon(z)x \text{ for all } z \in K[J]\} \\ &= L^{K[J]}, \text{say}. \end{split}$$

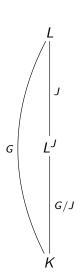
 L/L^J is Hopf-Galois for $L^J \otimes_K K[J]$.

Normality in Galois extensions via group algebras

If J is a normal subgroup of G then L^J/K is a Galois extension with Galois group G/J. In this case L^J/K is Hopf-Galois for K[G/J].

Idea

Investigate analogous questions for Hopf-Galois structures on separable extensions of fields.



The Greither-Pareigis classification

Theorem (Greither and Pareigis, 1987)

Let L/K be a separable extension of fields with Galois closure E.

- Let G = Gal(E/K), G' = Gal(E/L), X = G/G'.
- Define $\lambda : G \to Perm(X)$ by $\lambda(\sigma)[\tau G'] = \sigma \tau G'$.
- Let G act on Perm(X) by ${}^{\sigma}\eta = \lambda(\sigma)\eta\lambda(\sigma)^{-1}$.

Then

- There is a bijection between G-stable regular subgroups of Perm(X) and Hopf-Galois structures on L/K;
- the Hopf algebra giving the Hopf-Galois structure corresponding to N is E[N]^G.



Hopf subalgebras and fixed fields

Let L/K be separable and Hopf-Galois for $E[N]^G$.

The Hopf subalgebras of $E[N]^G$ are $E[P]^G$ with P a G-stable subgroup of N.

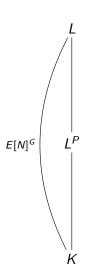
Each Hopf subalgebra has a corresponding fixed field:

$$L^P = \{ x \in L \mid z \cdot x = \varepsilon(z) x \text{ for all } z \in E[P]^G \}.$$

 L/L^P is Hopf-Galois for $L^P \otimes_K E[P]^G$.

Example

If L/K is Galois with group G then K[G] corresponds to $\rho(G) \subset \text{Perm}(G)$. The action of G on $\rho(G)$ is trivial, so every subgroup of $\rho(G)$ is G-stable. We recover the situation considered earlier.



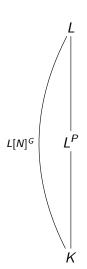
Normality and quotient Hopf-Galois structures

Theorem (Koch, Kohl, T, Underwood, 2019)

Suppose that L/K is a Galois extension of fields that is Hopf-Galois for $L[N]^G$, and that P is a normal G-stable subgroup of N.

Then L^P/K is Hopf-Galois for $L[N/P]^G$.

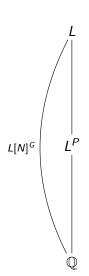
Important to note that L^P/K might not be Galois.



Normality and quotient Hopf-Galois structures

Example

- Let *L* be the splitting field of $x^3 2$ over \mathbb{Q} .
- L/\mathbb{Q} is Galois with Galois group $G \cong D_3$.
- Perm(G) contains G-stable regular subgroups that are isomorphic to C_6 . Let N be one.
- L/\mathbb{Q} is Hopf-Galois for $L[N]^G$.
- *N* has a unique subgroup *P* of order 2.
- P is normal and G-stable.
- ullet By the theorem, L^P/\mathbb{Q} is Hopf-Galois for $L[N/P]^G$.
- But L^P/\mathbb{Q} is not Galois.



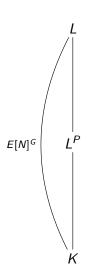
A slight generalization

Theorem

Suppose that L/K is a separable extension of fields that is Hopf-Galois for $E[N]^G$, and that P is a normal G-stable subgroup of N.

Then L^P/K is Hopf-Galois for $E[N/P]^G$.

Remainder of the talk is about the application of these ideas to questions of integral module structure. Henceforth, suppose that L/K is an extension of number fields or p-adic fields.



A useful lemma in Galois module theory

Suppose that L/K is Galois with group G, and $J \triangleleft G$.

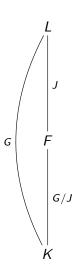
Write $F = L^J$, and let

- $\pi: K[G] \twoheadrightarrow K[G/J]$ be the algebra homomorphism induced by the natural map $G \twoheadrightarrow G/J$;
- $\mathfrak{A}_{L/K}$ be the associated order of \mathfrak{O}_L in K[G];
- $\mathfrak{A}_{F/K}$ be the associated order of \mathfrak{O}_F in K[G/J].

Lemma (Byott and Lettl, 1996)

Suppose that $\mathfrak{O}_L=\mathfrak{A}_{L/K}\cdot \alpha$ and that L/F is (at most) tamely ramified. Then

- $\bullet \ \mathfrak{A}_{F/K} = \pi(\mathfrak{A}_{L/K});$
- $\mathfrak{O}_F = \mathfrak{A}_{F/K} \cdot \mathrm{Tr}_{L/F}(\alpha)$.



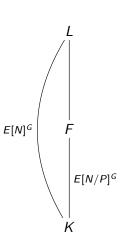
Suppose that L/K is separable and Hopf-Galois for $E[N]^G$, and that $P \triangleleft N$ is G-stable.

Write $F = L^P$, and let

- $\mathfrak{A}_{L/K}$ be the associated order of \mathfrak{O}_L in $E[N]^G$;
- $\mathfrak{A}_{F/K}$ be the associated order of \mathfrak{O}_F in $E[N/P]^G$.

Lemma

The E-algebra homomorphism $\pi: E[N] \twoheadrightarrow E[N/P]$ induced by the natural map $N \twoheadrightarrow N/P$ descends to a K-algebra homomorphism $\pi: E[N]^G \twoheadrightarrow E[N/P]^G$



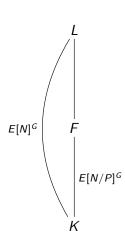
Recall

- \bullet $F = L^P$:
- $\mathfrak{A}_{L/K}$ is the associated order of \mathfrak{O}_L in $E[N]^G$;
- $\mathfrak{A}_{F/K}$ is the associated order of \mathfrak{O}_F in $E[N/P]^G$.

Lemma

Suppose that $\mathfrak{O}_L=\mathfrak{A}_{L/K}\cdot \alpha$ and that L/F is tamely ramified. Then

- $\mathfrak{A}_{F/K} = \pi(\mathfrak{A}_{L/K});$
- $\mathfrak{O}_F = \mathfrak{A}_{F/K} \cdot \mathrm{Tr}_{L/F}(\alpha)$.



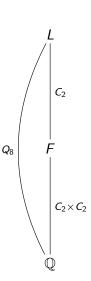
Theorem (Taylor)

Let L/\mathbb{Q} be a tamely ramified Galois extension with group $G\cong Q_8$, and suppose that L/\mathbb{Q} is Hopf-Galois for $L[N]^G$ with N cyclic.

Then \mathfrak{O}_L is locally free, but not free, over $\mathfrak{A}_{L/\mathbb{Q}}$.

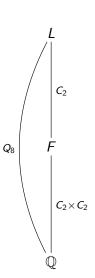
Proof.

- Local freeness is already known.
- *N* has a unique subgroup *P* of order 2.
- P is normal and G-stable.
- $F = L^P$ is a real biquadratic extension of \mathbb{Q} .
- N/P is cyclic, and K/\mathbb{Q} is Hopf-Galois for $L[N/P]^G$.



Proof Continued...

- There are three HGS on F/\mathbb{Q} for which the underlying N is cyclic.
- They correspond to the three quadratic subfields.
- \mathfrak{O}_F is free over its associated order in a HGS only if the corresponding quadratic subfield is imaginary.
- Therefore \mathfrak{O}_F is not free over its associated order in $L[N/P]^G$.
- ullet By the lemma, \mathfrak{O}_L is not free over $\mathfrak{A}_{L/\mathbb{Q}}$.



Another useful lemma in Galois module theory

Lemma (Byott and Lettl, 1996)

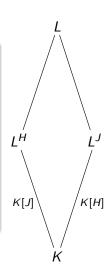
Suppose that L/K is Galois with group $G = H \times J$.

Then L^H/K and L^J/K are linearly disjoint, and

 $L = L^{H}L^{J}$. Suppose in addition that

- $\mathfrak{d}(L^H/K)$ and $\mathfrak{d}(L^J/K)$ are coprime;
- $\bullet \ \mathfrak{O}_{\mathsf{L}^{\mathsf{H}}} = \mathfrak{A}_{\mathsf{L}^{\mathsf{H}}/\mathsf{K}} \cdot \alpha;$
- $\bullet \ \mathfrak{O}_{L^J} = \mathfrak{A}_{L^J/K} \cdot \beta.$

Then $\mathfrak{I}_L = \mathfrak{A}_{L/K} \cdot \alpha \beta$.

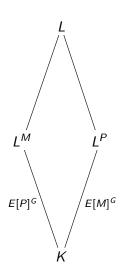


Lemma

Suppose that L/K is separable and Hopf-Galois for $E[N]^G$, and that $N=M\times P$ for G-stable subgroups M,P of N. Then

- L^M/K and L^P/K are linearly disjoint;
- L^P/K is Hopf-Galois for $E[M]^G$;
- L^M/K is Hopf-Galois for $E[P]^G$.

Continued...

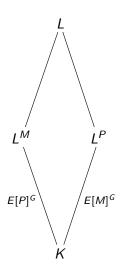


Lemma (Continued)

Suppose in addition that

- $\mathfrak{d}(L^M/K)$ and $\mathfrak{d}(L^P/K)$ are coprime;
- $\mathfrak{O}_{L^M} = \mathfrak{A}_{L^M/K} \cdot \alpha$;
- $\bullet \ \mathfrak{O}_{L^P} = \mathfrak{A}_{L^P/K} \cdot \beta.$

Then $\mathfrak{I}_L = \mathfrak{A}_{L/K} \cdot \alpha \beta$.

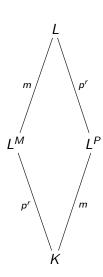


Theorem

Let L/K be a tame separable extension of p-adic fields which is Hopf-Galois for $E[N]^G$, with N abelian. Then \mathfrak{D}_L is a free $\mathfrak{A}_{L/K}$ -module.

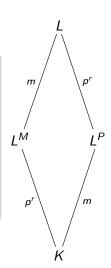
Proof.

- Write $N = M \times P$ with |M| = m, $|P| = p^r$, and $p \nmid m$.
- *M*, *P* are normal and *G*-stable.
- L^P/K is Hopf-Galois for $E[M]^G$.
- L^M/K is Hopf-Galois for $E[P]^G$.



Proof Continued...

- L^M/K is unramified, so \mathfrak{O}_{L^M} is free over $\mathfrak{A}_{L^M/K}$.
- The degree of L^P/K is prime to p, so \mathfrak{O}_{L^P} is free over $\mathfrak{A}_{L^P/K}$.
- $\mathfrak{d}(L^M/K)$ and $\mathfrak{d}(L^P/K)$ are coprime.
- By the lemma, \mathfrak{D}_L is free over $\mathfrak{A}_{L/K}$.



Thank you for your attention.